40 research outputs found

    Why Chromatic Imaging Matters

    Full text link
    During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the topical collection: Future of Optical-infrared Interferometry in Europ

    Molecular Gas in NUclei of GAlaxies (NUGA) III. The warped LINER NGC3718

    Get PDF
    16 pages, 17 figures.-- Published in: A&A 442, 479-493 (2005), publisher version available at: http://dx.doi.org/10.1051/0004-6361:20041731.We present the first interferometric observations of CO(1–0) and CO(2–1) line emission from the warped LINER NGC 3718, obtained with the IRAM Plateau de Bure Interferometer (PdBI). This L1.9 galaxy has a prominent dust lane and on kiloparsec scales, a strongly warped atomic and molecular gas disk. The molecular gas is closely associated with the dust lane across the nucleus and its kinematic center is consistent with the millimeter continuum AGN. A comparison of our interferometric mosaic data, which fully cover the ~ 9 kpc warped disk, with a previously obtained IRAM 30m single dish CO(1–0) map shows that the molecular gas distribution in the disk is heavily resolved by the PdBI map. On the nucleus the interferometric maps alone contain less than one half of the single dish line flux, and the overall mosaic accounts for about a tenth of the total molecular gas mass of ~ 2.4 × 108M⊙. After applying a short-spacing correction with the IRAM 30m data to recover the missing extended flux, we find in total six main source components within the dust lane: one associated with the nucleus, four symmetrically positioned on either side at galactocentric distances of about 1.3 kpc and 4.0 kpc from the center, and a sixth on the western side at ~ 3 kpc with only a very weak eastern counterpart. In the framework of a kinematic model using tilted rings, we interpret the five symmetric source components as locations of strong orbital crowding. We further find indications that the warp appears not only on kpc scales, but continues down to ~ 250 pc. Besides the sixth feature on the western side, the lower flux (a factor of ~ 2) of the eastern components compared to the western ones indicates an intrinsic large scale asymmetry in NGC 3718 that cannot be explained by the warp. Indications for a small scale asymmetry are also seen in the central 600 pc. These asymmetries might be evidence for a tidal interaction with a companion galaxy (large scales) and gas accretion onto the nucleus (small scales). Our study of NGC 3718 is part of the NUclei of GAlaxies (NUGA) project that aims at investigating the different processes of gas accretion onto Active Galactic Nuclei (AGN).The research presented in this paper has been financially supported in part by the SFB 494. Stéphane Léon is partially supported by DGI Grant AYA 2002-03338 and Junta de Andalucía.Peer reviewe

    A complex dust morphology in the high-luminosity AGN Mrk 876

    Full text link
    Recent models for the inner structure of active galactic nuclei (AGN) advocate the presence of a radiatively accelerated, dusty outflow launched from the outer regions of the accretion disk. Here we present the first near-infrared (near-IR) variable (rms) spectrum for the high-luminosity, nearby AGN Mrk 876. We find that it tracks the accretion disk spectrum out to longer wavelengths than the mean spectrum due to a reduced dust emission. The implied outer accretion disk radius is consistent with the infrared results predicted by a contemporaneous optical accretion disk reverberation mapping campaign and much larger than the self-gravity radius. The reduced flux variability of the hot dust could be either due to the presence of a secondary, constant dust component in the mean spectrum or introduced by the destructive superposition of the dust and accretion disk variability signals or some combination of both. Assuming thermal equilibrium for optically thin dust, we derive the luminosity-based dust radius for different grain properties using our measurement of the temperature. We find that in all cases considered the values are significantly larger than the dust response time measured by IR photometric monitoring campaigns, with the least discrepancy present relative to the result for a wavelength-independent dust emissivity law, i.e. a blackbody, which is appropriate for large grain sizes. This result can be well explained by assuming a flared, disk-like structure for the hot dust.Comment: 18 pages, 7 figures; accepted to Ap

    On-sky results for the integrated microlens ring tip-tilt sensor

    Get PDF
    We present the first on-sky results of the microlens ring tip-tilt sensor. This sensor uses a 3D printed microlens ring feeding six multimode fibers to sense misaligned light, allowing centroid reconstruction. A tip-tilt mirror allows the beam to be corrected, increasing the amount of light coupled into a centrally positioned single-mode (science) fiber. The sensor was tested with the iLocater acquisition camera at the Large Binocular Telescope in Tucson, Arizona, in November 2019. The limit on the maximum achieved rms reconstruction accuracy was found to be 0.19/D in both tip and tilt, of which approximately 50% of the power originates at frequencies below 10 Hz. We show the reconstruction accuracy is highly dependent on the estimated Strehl ratio and simulations support the assumption that residual adaptive optics aberrations are the main limit to the reconstruction accuracy. We conclude that this sensor is ideally suited to remove post-adaptive optics noncommon path tip-tilt residuals. We discuss the next steps for concept development, including optimization of the lens and the fiber, tuning of the correction algorithm, and selection of optimal science cases

    An innovative integral field unit upgrade with 3D-printed micro-lenses for the RHEA at Subaru

    Get PDF
    In the new era of Extremely Large Telescopes (ELTs) currently under construction, challenging requirements drive spectrograph designs towards techniques that efficiently use a facility's light collection power. Operating in the single-mode (SM) regime, close to the diffraction limit, reduces the footprint of the instrument compared to a conventional high-resolving power spectrograph. The custom built injection fiber system with 3D-printed micro-lenses on top of it for the replicable high-resolution exoplanet and asteroseismology spectrograph at Subaru in combination with extreme adaptive optics of SCExAO, proved its high efficiency in a lab environment, manifesting up to ~77% of the theoretical predicted performance

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore